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CHAPTER 4
SEEPAGE PRINCIPLES

4-1. General Considerations. Seepage as used in this manual is defined as
the flow of water through homogeneous saturated soil under steady-state condi-
tions. Additionally, the soil particles, soil structure, and water are
assumed incompressible and flow obeys Darcy's law. Thus transient conditions
such as a wetting front or other movement of water in unsaturated soil, con-
solidation, and subsidence are not considered for analysis. Principles which
characterize movement of energy through conducting media also apply to the
movement of water through soils. Seepage has been modeled for study by using
flow of electricity and heat. Both conditions are governed by Laplace's equa-
tion in homogeneous media. As explained in Chapter 2, water moves from a
higher energy state to a lower energy state, and in seepage the difference in
energy states is the amount of energy required to move the water through the
soil, i.e., to overcome the soil's resistance to the flow of water. Chapter 4
will consider factors controlling seepage, equations describing seepage,
methods of determining pressure distribution and pressures at particular points
in the soil, and seepage quantities. For example, in figure 4-1(a): What is
the uplift pressure at point 5? How much water will exit at point 8? How
fast? Will the sand at point 8 be eroded? If the sheet pile at point 6 is
removed, how will it affect pressure distribution beneath the dam?

4-2. Boundary Conditions.

a. Basis. The saturated soil which is considered for analysis must be
defined by boundaries, permeability of the soil, and heads imposed upon the
water. This section considers the types of boundaries which may define a
particular porous soil mass considered for analysis. The nature and location
of these boundaries are determined by a soils exploration program, assumptions
based on engineering judgment and conditions imposed by the proposed design.
Normally, simplifying assumptions are required in order to establish boundaries
which will make analysis feasible. Generally, seepage analysis problems
associated with dams will involve four possible types of boundaries (Harr
1962). Examples of the four general types of boundary conditions are shown in
figure 4-1.

b. Impervious Boundaries. The interface between the saturated, per-
vious soil mass and adjacent materials such as a very low permeability soil or
concrete is approximated as an impervious boundary. It is assumed that no flow
takes place across this interface, thus flow in the pervious soil next to the
impervious boundary is parallel to that boundary. In figure 4-1, lines AB and
1-8 are impervious boundaries.

c. Entrances and Exits. The lines defining the area where water enters
or leaves the pervious soil mass are known as entrances or exits, respec-
tively. Along these lines (O-l and 8-G in figure 4-1(a) and AD and BE in
figure 4-1(b)) are lines of equal potential; that is, the piezometric level is
the same all along the line regardless of its orientation or shape. Flow is
perpendicular to an entrance or exit. Entrances and exits are also called
reservoir boundaries (Harr 1962).
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Figure 4-1. Examples of boundary conditions (courtesy of

McGraw-Hill Book Company
180

)

d. Surface of Seepage. The saturated pervious soil mass may have a
boundary exposed to the atmosphere and allow water to escape along this
boundary, line GE, figure 4-1(b). Pressure along this surface is atmospheric.
The surface of seepage may also be called a seepage face.

e. Line of Seepage. Known also as the free surface, this boundary is
located within the pervious soil where water is at atmospheric pressure,
line DG, figure 4-1(b). Because of capillary forces, the saturated zone of
pervious soil extends slightly above the line of seepage, but this capillary
zone rarely has significant influence on seepage analysis. Whereas the first
two boundaries are normally defined by the geometric boundaries of the satu-
rated porous soil mass, the line of seepage is not known until the flow dis-
tribution within the pervious soil is known. Again, as for an impervious
boundary, the assumption is made that no flow takes place across the line of
seepage, thus flow in the pervious soil next to this boundary is parallel to
the boundary.

4-3. Confined and Unconfined Flow Problems. Two general cases of seepage are
considered in this manual: confined and unconfined flow. Confined flow
exists in a saturated pervious soil mass which does not have a line of seepage
boundary. Figure 4-1(a) is an example of confined flow. Unconfined flow,
figure 4-1(b), exists when the pervious soil mass has a line of seepage. Thus
confined flow has all boundaries defined while for unconfined flow the surface
of seepage and line of seepage must be defined in the analysis.
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4-4. Laplace's Equation.

a. Seepage Analysis. In order to do a seepage analysis, a general
model describing the phenomena of seepage must be available. Supplied with
specific boundary conditions and soil properties, this model can be used to
determine head and flow distribution and seepage quantities. The Laplace
equation is the mathematical basis for several models or methods used in
seepage analysis.

b. Basis of Laplace's Equation. Figure 4-2 shows a general seepage
condition from which an element is taken. Development of Laplace's equation
depends on six assumptions:

(1) Heads h
1

and h
2

are constant and thus flow is steady state.

(2) Water is incompressible.

(3) Volume of voids does not change--soil is incompressible.

(4) Flow is laminar--Darcy's law applies.

(5) The element has a dimension, dy , into the plane of the figure
which gives an element volume but no flow takes place perpendicular to the
plane of the figure, i.e., the flow is two-dimensional.

(6) The saturated pervious soil stratum is homogeneous. From
figure 4-2(b) let:

v ,vx z
= components of discharge velocity in x and z directions,

respectively

hydraulic gradient in the x direction

hydraulic gradient in the z direction

(The minus sign indicates that gradient is in a direction opposite increasing
piezometric head.) Assumptions 1, 2, and 3 assure continuity of flow which
means that water entering the element per unit of time, q e (where qe = vx

dz dy + vz dx dy) equals water leaving the element per unit of time,

(where Setting

equal to gives:
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(4-1)

Using Darcy's law, v = ki and assuming the same permeability in the x and
z directions:

kh is called a potential or velocity potential and is normally given the
symbol Thus

and

Substituting into equation 4-1 gives

(4-2)

which is a form of the Laplace equation for laminar, two-dimensional flow in
homogeneous, isotropic, porous media. The development here follows Terzaghi
1943. Rigorous developments can be found in Bear 1972, Cedergren 1977, and
Harr 1962.
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Figure 4-2. Flow of water through saturated pervious soil
beneath a hydraulic structure (courtesy of John Wiley and

Sons274)

4-5. Methods for Solution of Laplace's Equation. Solutions to steady-state,
laminar flow, seepage problems must solve Laplace's equation. Several methods
have been developed to solve exactly or approximately Laplace's equation for
various cases of seepage, figure 4-3 (Radhakrishnan 1978). One of the most
widely used methods, the flow net, can be adapted to many of the underseepage
and through-seepage problems found in dams and other projects involving
hydraulic structures. This method will be covered in detail in Section 4.6.

a. Models. Models which scale or simulate the flow of water in porous
media can provide a good feel for what is occurring during seepage and allow a
physical feel for the reaction of the flow system to changes in head, design
geometry, and other assumptions. Appendix B contains examples of the various
model types.

(1) As previously mentioned, processes which involve movement of energy
due to differences in energy potential operate by the same principles as
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movement of confined ground water. These processes include electricity and
heat flow which have been used as seepage analogies. Electrical analogies have
proven particularly useful in the study of three-dimensional problems and in
problems where geometric complexities do not allow adequate simplifying
assumptions for analytical methods. "Wet" electrical analogies normally use a
conducting aqueous solution or gel to model the volume of the confined, satu-
rated, porous soil. Wet models are well suited to projects where an irregular
structure penetrates a confined aquifer. By probing the gel or solution when
a set potential or voltage is applied across it, electrical potential can be
determined at various points of interest in the model aquifer (McAnear and
Trahan 1972, Banks 1963, 1965). When field conditions can be characterized by
a two-dimensional plan or section, conducting paper models may be used to
inexpensively determine the effect of various configurations on the flow and
pressures in the aquifer, figure 4-4 (Todd 1980).

(2) Sand models which may use prototype materials can provide informa-
tion about flow paths and head at particular points in the aquifer. The sand
or porous material may be placed underwater to provide a homogeneous condi-
tion, or layers of different sand sizes may be used to study effects of inter-
nal boundaries or layers. If the flow is unconfined and the same material is
used for model and prototype, the capillary rise will not be scaled and must
be compensated for in the model. Flow can be traced by dye injection and
heads determined by small piezometers. Disadvantages include effects of
layering when the porous material is placed, difficulty in modeling prototype
permeability and boundary effects. Prickett (1975) provides examples of sand
tank models and discusses applications, advantages, and disadvantages.

(3) Viscous flow models have been used to study transient flow (e.g.,
sudden drawdown) and effects of drains. This method depends on the flow of a
viscous fluid such as oil or glycerin between two parallel plates and is nor-
mally used to study two-dimensional flow. As with sand models, dye can be
used to trace flow lines.' Construction is normally complicated and operation
requires care since temperature and capillary forces affect the flow. Flow
must be laminar, which can be difficult to achieve at the boundaries or at
sharp changes in boundary geometry.

b. Analytical Methods.

(1) Harr (1962) explains the use of transformations and mapping to
transfer the geometry of a seepage problem from one complex plane to another.
In this manner, the geometry of a problem may be taken from a plane where the
solution is unknown to a plane where the solution is known. While this method
has been used to obtain solutions to general problems it is not frequently
used for solutions to site-specific seepage problems since it requires the use
of complex variable theory and proper choice of transformation functions.

(2) Pavlovsky (1936, 1956) developed an approximate method which allows
the piecing together of flow net fragments to develop a flow net for the total
seepage problem. This method, termed the Method of Fragments, allows rather
complicated seepage problems to be resolved by breaking them into parts,
analyzing flow patterns for each, and reassembling the parts to provide an
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Figure 4-4. Use of two-dimensional conducting paper to find flow
lines and equipotential lines (courtesy of John Wiley

and Sons
279)

overall solution. Appendix B contains details of the Methods of Fragments
based on Harr's (1962) explanation of Pavlovsky's work.

(3) Closed form solutions exist for simpler seepage conditions such as
flow to a fully penetrating well with a radial source (Muskat 1946). Seepage
problems associated with dams typically require approximate solutions because
of complicated flow conditions.
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Computer models are used to make
equation in complex flow conditions.

The two primary methods of numerical solution are finite difference and finite
element. Both can be used in one-, two-, or three-dimensional modeling.
Several computer programs for these methods are available within the Corps of
Engineers (Edris and Vanadit-Ellis 1982).

(1) The finite difference method solves the Laplace equations by
approximating them with a set of linear algebraic equations. The flow region
is divided into a discrete rectangular grid with nodal points which are
assigned values of head (known head values along fixed head boundaries or
points, estimated heads for nodal points that do not have initially known head
values). Using Darcy's law and the assumption that the head at a given node
is the average of the surrounding nodes, a set of N linear algebraic equa-
tions with N unknown values of head are developed (N equals number of
nodes). Simple grids with few nodes can be solved by hand. Normally, N is
large and relaxation methods involving iterations and the use of a computer
must be applied. Appendix B provides details of this method.

(2) The finite element method is a second way of numerical solution.
This method is also based on grid pattern (not necessarily rectangular) which
divides the flow region into discrete elements and provides N equations with
N unknowns. Material properties, such as permeability, are specified for
each element and boundary conditions (heads and flow rates) are set. A system
of equations is solved to compute heads at nodes and flows in the elements.
The finite element has several advantages over the finite difference method
for more complex seepage problems. These include (Radhakrishnan 1978):

(a) Complex geometry including sloping layers of material can be easily
accommodated.

(b) By varying the size of elements, zones where seepage gradients or
velocity are high can be accurately modeled.

(c) Pockets of material in a layer can be modeled.

4-6. Graphical Method for Flow Net Construction. Flow nets are one of the
most useful and accepted methods for solution of Laplace's equation (Casagrande
1937). If boundary conditions and geometry of a flow region are known and can
be displayed two dimensionally, a flow net can provide a strong visual sense
of what is happening (pressures and flow quantities) in the flow region.
Equation 4-2, paragraph 4.4, is an elliptical partial differential equation
whose solution can be represented by sets of orthogonal (intersecting at right
angles) curves. One set of curves represents flow paths of water through the
porous media while curves at right angles to the flow paths show the location
of points within the porous media that have the same piezometric head. The
former are called flow lines, the latter equipotential lines. The flow net is
a singular solution to a specific seepage condition, i.e., there is only one
family of curves that will solve the given geometry and boundary conditions.
This does not mean that a given problem will have only one flow net--we may
choose from the family of curves different sets of curves to define the
problem, figure 4-5. The relationship between the number of equipotential
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drops, Nd , and flow channels, Nf , does not change. A brief study of

figure 4-5 will provide a feel for where quantity of flow is greatest,
velocity highest, and gradient highest, i.e., in the area of the porous soil
nearest the sheet pile (flow channel 4, figure 4-5(a); flow channel 5,
figure 4-5(b)). This section draws upon several publications which give

a. Net drawn for four flow
channels.

b. Net drawn for five flow
channels.

Figure 4-5. Flow net for a sheetpile wall in a permeable foundation

(from U. S. Army Engineer District, Little Rock92)

detailed explanation of flow net derivation and drawing instructions
(Casagrande 1937; Cooley, Harsh, and Lewis 1972; Soil Conservation Service
1973; and Cedergren 1977). One of the best ways to develop an understanding of
seepage and flow nets is to study well-drawn flow nets found in these and other
references and to practice drawing them.

a. Assumptions for Flow Net Construction. In order to draw a flow net,
several basic properties of the seepage problem must be known or assumed:

(1) The geometry of the porous media must be known.

(2) The boundary conditions must be determined (see paragraph 4.2).

(3) The assumptions required to develop Laplace's equation must hold
(see paragraph 4.4b).

(4) The porous media must be homogeneous and isotropic (anisotropic
conditions are dealt with in paragraph 4.7).
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b. Guidelines for Flow Net Drawing. Once the section of porous media
and boundary conditions are determined, the flow net can be drawn following
general guidelines:

(1) Determine flow conditions at the boundaries:

(a) Flow will be along and parallel to impermeable boundaries lines BCD
and FG, figure 4-5.

(b) Entrances and exits are equipotential lines, lines AB and DE,
figure 4-5, with flow perpendicular to them.

(c) Flow will be along and parallel to a line of seepage--line AB,
figure 4-6.

Figure 4-6. Seepage through an embankment
underlain by an impermeable foundation

(courtesy of John Wiley and Sons
155)

(d) Entrance and exit conditions for a line of seepage are shown in
figure 4-7 under "Conditions for Point of Discharge."

This will provide a feel for the flow net.

(2) Equipotential and flow lines must meet at right angles and make
curvilinear squares. Usually, it is best to make either the number of flow
channels a whole number (if the number of flow channels is a whole number, the
number of equipotential drops will likely be fractional).

(3) Generally, a crude flow net should first be completed and adjust-
ments applied throughout the net rather than defining one portion since
refinement of a small portion tends to shift the whole net.

(4) The initial emphasis should be on getting intersections of flow
lines and equipotential lines at 90º, then shifting lines to form squares.

(5) If, in the finished flow net, either equipotential drops or flow
channels end up as a whole number plus a fractional line of squares (equi-
potential drop or flow channel), this should not be a problem but must be used
in any calculations based on the flow net. It is convenient to locate a par-
tial equipotential drop in an area of uniform squares since this will make
accurate estimation of the fraction easier.
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Figure 4-7. Entrance and discharge (exit) conditions for a
line of seepage (courtesy of New England Waterworks

Association 151)

(6) Use only enough flow lines and equipotential lines to bring out
flow net definition. If more information is needed in particular areas, the
squares may be subdivided into smaller squares for more detail of flow and
pressure distribution.

(7) As shown in figure 4-6, equipotential line intersections at a line
of seepage, line AB, and a surface of seepage or discharge face, line BC, are
controlled by elevation since pressure is atmospheric along these lines.
Along the discharge face BC, the equipotential lines and flow lines do not
form squares since the discharge face is not a flow line or an equipotential
line but a line at atmospheric pressure and changing elevation potential.

(8) Figures 4-7 and 4-8 provide some guidelines for entrances and exits
and particular areas within the flow region.
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For foundations, furthermost upstream and down-
stream flow lines and equipotential lines should
intersect at or near the center of the pervious
foundation.

The flow line and equipotantial line nearest an
angle shouId intersect on the bisector of the
angle.

Same as (b) except for an upstream toe on an
impervious foundation.

2:1 length ratios to establish shape of the
“square” in a pervious foundation at the toe of
an impervious fill.

2:1 length ratios used with angle bisectors to
shape flow around an imbedded 90-degree angle.

2:1 length ratios to establish flow directions
beneath a thin cutoff wall taken to the midpoint
of the pervious stratum.

Subdivide to check odd-shaped "squares”. Re-
sulting smaller odd-shaped "squares” should
have the general shape of the one subdivided.

Figure 4-8. Guides for flow net construction (from U. S. Department

of Agriculture
123

)
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(9) It is helpful to lay out the boundaries which will contain the flow
net in ink and use a soft pencil and eraser to develop the flow net to final
form.

(10) Accuracy of squares may be checked by drawing diagonals for a
square or subdividing the square by sketching an additional flow line and
equipotential line orthogonal to it (ad infinitum). The diagonals should be
smooth curves intersecting at right angles. Also, if the intersection of
two flow lines and two equipotential lines is a square, a circle, tangent to
each of the sides, may be inscribed within the square.

(11) For calculation of seepage quantity only a crude flow net is
required. Accurate flow nets are required to determine pressure distribution.

4-7. Flow Net for Anisotropic Soil. Most naturally occurring soils and many
man-placed soils have greater horizontal permeabilities than vertical. This
affects the shape of a flow net since the flow net provides a solution to
Laplace's equation which is based on the assumption of an isotropic porous
media (paragraph 4.4b). To compensate for anisotropy, the dimensions of the
porous media are changed by the square root of the ratio of the two perme-
abilities. If kh
permeability,

is the horizontal permeability and kv is the vertical
then the horizontal dimensions of the porous media cross section

are changed by a ratio of , e.g., if the base of a dam is 300 feet,
then it would be changed by a factor of , or would be 300 feet times

The same ratio would be applied to all other horizontal dimensions

to produce a transformed section. Next the flow net is drawn on the trans-
formed section, as described in paragraph 4-6. Then the section, including the
flow net, is returned to the original (true section) which produces a nonsquare
flow net. Computations are made using the nonsquare flow net just as a square
flow net is used for isotropic conditions. This procedure is illustrated in
figures 4-9 and 4-10. In the same manner, dimensions in the vertical direction
could be changed by the factor , square or normal flow net drawn

on the transformed section, then returned to true section. Pore pressure
distribution and hydrostatic uplift may be taken from either section while
gradient and magnitude of seepage forces must be determined from the true
section.

4-8. Flow Net for Composite Sections. Commonly, projects requiring seepage
analysis involve different soils with different permeabilities, e.g., strati-
fied foundation materials and zoned dams. Certain rules apply to flow lines,
equipotential lines, and lines of seepage crossing internal boundaries between
soils of different permeabilities. Figure 4-11 illustrates the deflection of
flow lines and equipotential lines at interfaces. The essential principle is
that the more permeable soil allows the same amount of water to flow with less
restriction, thus drops in potential within the higher permeability soil will
be farther apart (i.e., less energy loss in the higher permeability soil for
the same length of flow as in the low permeability soil). It should be noted
in figure 4-11 that when flow goes from lower permeability soil to higher
permeability soil, the distance between flow lines decreases (flow channel gets
smaller) and the distance between equipotential drops increases, Figures 4-12
through 4-14 are examples of flow net construction for seepage through soils of

4-14



EM 1110-2-1901

30 Sep 86

a. True section for kh
conditions.

= kv and transformed section for anisotropic

b. True section for flow net in a for kh = 4kv

c. True section for flow net in a for kh = 9kv

Figure 4-9. Flow nets constructed on transformed section and redrawn on true

section (courtesy of John Wiley and Sons
155

)
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a. Identify boundaries

b. Determine deflection of flow net at interface between soils with
different permeabilities.

flowc. Trial net

d. Final flow net

Figure 4-12. Flow net construction for a composite section

(courtesy of John Wiley and Sons155)
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a. Construct flow net assuming an impermeable foundation.

b. External equipotential lines into foundation without adjusting lines of net
in dam.

c. Adjust flow net until balanced.

Figure 4-13. Flow net construction for embankment on a foundation of lower

permeability (courtesy of John Wiley and Sons155)
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a. Construct flow net assuming impermeable embankment

b. Extend equipotentials up into dam locating initial position of
line of seepage

c. Adjust flow net to meet basic flow net requirements.

Figure 4-14. Flow net construction for an embankment on a foundation

of higher permeability (courtesy of John Wiley and Sons
155

)
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differing permeabilities. In all cases, flow lines and equipotential lines
maintain continuity across the interface between the soils though direction
will change abruptly. Additionally, the number of flow channels must remain
constant throughout the flow net. For the two examples of embankments with
foundations of differing permeabilities, figures 4-13 and 4-14, the flow is
more or less parallel to the interface, and the more permeable zone will
dominate flow location and quantity. Because of this, the flow net can be
started by assuming all flow goes through the most permeable zone. Once this
flow net is drawn, it is extended into the lower permeability zone and refined
to meet the general flow net criteria of paragraph 4.6. Transferring a line of
seepage across the interface of soils of differing permeability, such as in a
zoned dam, is more involved than transferring of flow lines and equipotential
lines and will be described in Chapter 6.

4-9. Determination of Seepage Quantities, Escape Gradients, Seepage Forces,
and Uplift Pressures. A flow net is a picture of seepage conditions under
given geometry and boundary conditions. It explains how pressures are dis-
tributed and where flow is being directed. Coupled with the knowledge of head
imposed on and the permeability of the porous media, the flow net can supply
important information about stability and flow quantity in two-dimensional
idealization of the real situation.

a. Seepage Quantities. Each of the complete flow channels passes an
equal volume of water per unit of time, while partial channels carry a propor-
tional flow. Each of the complete potential drops between equipotential lines
is an equal portion of the total head, h , applied across the flow net with
partial drops having a proportionally smaller part. The number of flow chan-
nels, including any partial channel, is given the symbol Nf while the number

of equipotential drops, including any partial drops, is given the symbol Nd .

The ratio of Nf/Nd is called the shape factor, , which is a characteristic

of the given geometry and boundary conditions and permeability ratios (k1/k2,

kv/kh). Quantity of flow per unit length through the porous media can be

determined by using Darcy's law, q = kiA and the shape factor. Total flow is

the sum of the flows through each flow channel, i.e., q = where q

is the total flow and is the flow through each complete flow channel. In

figure 4-10, q = Since is the head loss between each

equipotential line (h = is the dimension of a flow net square:

and from the Darcy equation:
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where a is the area of the rectangle perpendicular to the flow direction.
If one side of the rectangle is one unit of length perpendicular of the plane
of the flow net, and the other dimension is , thus a = This
leads to:

Then:

which gives the quantity of seepage flow for each unit of thickness of porous
media perpendicular to the plane of the flow net. Figure 4-10(b) gives an
example of this calculation for anisotropic seepage conditions in a dam
foundation. The permeability, k' , used for anisotropic conditions,
k' = is derived by Casagrande (1937).

b. Escape and Critical Gradients. The escape or exit gradient, ie ,
is the rate of dissipation of head per unit of length in the area where
seepage is exiting the porous media. For confined flow, the area of concern is
usually along the uppermost flow line near the flow exit, e.g., at the
downstream edge of a concrete or other impermeable structure, figure 4-15.
Escape gradients for flow through embankments may also be studied by choosing
squares from the area of interest in the flow net (usually at or near the exit
face and downstream toe) and calculating gradients. If the gradient is too
great where seepage is exiting, soil particles may be removed from this area.
This phenomenon, called flotation, can cause piping (the removal of soil
particles by moving water) which can lead to undermining and loss of the
structure. The gradient at which flotation of particles begins is termed the
critical gradient, icr . Critical gradient is determined by the in-place
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unit weight of the soil and is the gradient at which upward drag forces on the
soil particles equal the submerged weight of the soil particles, figure 4-16.
The critical gradient is dependent on the specific gravity and density of the
soil particles and can be defined in terms of specific gravity of solids, Gs ,
void ratio, e , and porosity, n :

since
n

and
e

or, e =  
1-n n = 1 + e

If typical values of Gs , e , and n for sand are used in the above

equations, ic r will be approximately 1. Investigators have recommended

ranges for factor of safety for escape gradient, FSG from 1.5 and 15,

depending on knowledge of soil and possible seepage conditions. Generally,
factors of safety in the range of 4-5 (Harr 1962, 1977) or 2.5-3 (Cedergren
1977) have been proposed.

c. Heave. In some cases, movement of soil at the downstream seepage
exit may not occur as flotation followed by particle-by-particle movement. A
mass of soil may be lifted initially, followed by piping. This phenomenon is
called heave and occurs when the upward seepage force due to differential head
equals the overlying buoyant weight of soil. Heave occurs under conditions of
critical hydraulic gradient. For field conditions, the point at which minimum
differential head offsets the overlying buoyant weight must be determined by
judgment and calculations. Terzaghi and Peck (1967) have evaluated the factor
of safety with respect to heave for a row of sheet piles. Resistance to heave
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Figure 4-16. Definition of critical gradient (prepared by WES)

may be developed by placing very pervious material on the exit face, which will
allow free passage of water but add weight to the exit face and thus add
downward force. This very pervious material must meet filter criteria to
prevent loss of the underlying soil through the weighting material.

d. Seepage Forces. Forces imposed on soil particles by the drag of
water flowing between them must be considered when analyzing the stability of
slopes, embankments, and structures subject to pressures from earth masses.
These forces are called seepage forces. The magnitude of this force on a mass
of soil is determined by the difference in piezometric head on each side of
the soil mass, the weight of water, and the area perpendicular to flow. The
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seepage force acts in the same direction as flow, i.e. along flow lines. Con-
sider the seepage force on plane A-A in figure 4-16. Since flow is vertically
upward, the direction of seepage force is up, the difference in piezometric
head is h , and the area perpendicular to flow is A . The seepage force,
Fs , is the part of the upward forces due to differential head, h , or:

In terms of gradient and unit volume;

and using f
S

as seepage force per unit volume:

Two methods of applying this force to use in stability analysis are described
by Cedergren (1977) and termed the gradient method and boundary pressure
method. EM 1110-2-1902 gives examples of embankment stability analyses
considering seepage forces. Additionally, the effect of buoyant forces on soil
mass stability must also be considered. The upward or buoyant force, Fb ,
causing reduction in effective stress on plane A-A, figure 4-15, is the
remainder of the upward forces on plane A-A:

e. Uplift Pressures. When seepage occurs beneath concrete or other
impermeable structures or strata, the underside of this impermeable barrier is
subject to a force which tends to lift the structure upward. The determina-
tion of this pressure or force is important in analyzing the stability of the
structure. An example of the analysis is given in figure 4-15. Summing of
the uplift pressures over the bottom area of the spillway will give the total
uplift force on the structure for a stability analysis. Harr's text (1962)
provides methods other than flow net construction to determine uplift
pressures.
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